ON NON-NEWTONIAN FLUID FLOWS UNDER CONDITIONS
OF AN INHOMOGENEOUS TEMPERATURE DISTRIBUTION

V. G. Litvinov and V. M. Goncharenko UDC 678,532,135

Variational principles for an incompressible viscous medium determining the velocity field
in steady nonisothermal motion are formulated. The flow of a polyethylene melt is investi-
gated under conditions of an inhomogeneous temperature distribution.

Polymer materials in a viscous-fluid state manifest the properties of a non-Newtonian fluid. Pro-
cesses of fabricating polymers into products are associated with the flow of melts of these materials under
conditions of an inhomogeneous temperature distribution.

Let us examine a nonisothermal non-Newtonian fluid in an arbitrary cylindrical channel. Let us in-
troduce a fixed Cartesian coordinate system such that the z axis coincides with the channel axis, We as-
sume the flow to be laminar, steady and directed along the channel axis., We also agsume that the temper-
ature T of the medium depends only on the x, y coordinates, where we consider the function T(x, y)} known,*
It can then be assumed that the velocity vector components are determined by

v, =0, Y), v,=v,=0. @

Let us examine the flow of a nonlinearly viscous fluid, in which the stress tensor is determined to the
accuracy of the hydrostatic pressure by the velocity gradients and temperature values in the time under con-
sideration. The equation of state of such a fluid is represented in a sufficiently general case in the form

01y = — P8, -+ 9B (2)

Here y is a scalar function dependent on the temperature and the second invariant of the strain rate tensor,
i.e.,

Y=9(ln T(x, 9) (3)
where I = B%)B%) /2.
The strain rate tensor components are
. du; Ov;
By = =L 4 i, 4
! ox, Ox; @

j

and in the case of the flow under consideration

ov \? v \?
I, = { — —1 . 5
* ( ox ) - ( dy ) ®)
It can be shown that the relationship (2) admits the existence of a potential function & = & (I, T(x, y))
such that

* By virtue of the low heat conductivity of polymers, and the comparatively short length of the channels in
machines fabricating these materials, the temperature of polymer melts varies quite inessentially along
the channel length (see [4, 7], say). Hence, the assumption that the temperature of the medium depends
only on the x and y coordinates is acceptable in application to the processes of polymer fabrication,
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Comparing the relationship
oD oD ;
90 _ 9D gy 7
aBD or, i @
with (2), we find
o0
_ i 8
v ol, ®)
Starting from (8), we have
I
© = [9(& T(x 9)de+C ®)

0
where C is an arbitrary constant; in particular, we can put C = 0,

Variational Principles, Variational principles can be formulated for a nonisothermal non-Newtonian
fluid flow by comparing the steady flow state with the velocities vj and an adjacent state with the velocities
vi + §vj, where the possible velocities 6v; are combined with the incompressibility condition, but not ab-
solutely with the equation of motion in stresses,

Let us expand the potential function in a Taylor series

1 &I’®

0 B(l) (1yy _ (1)
( +GB ) (D(Bi )+ B W

(l) 17 if 10
5 6By 4 L 8B 8B{Y + .
1]

Integrating (10) over the volume V taking account of (6), we arrive at

f s,;0B = A jcp(Bf,")dV j @ (8B) dv. (11)
1

Using the law of conservation of mechanical energy, we arrive at the variational principle for an in-
compressible viscous medium governing the velocity field in steady nonisothermal flow:

A“ @ (B{)dv — 2 j N, dS —2 y X;0,dVi=AF =0 +6* § O (B dv. (12)
v v

If the second variation & Sé(B YAV is positive, then the real velocity field determines the minimum
of the functional F.

Neglecting volume forces, and taking account of (9), the functional F becomes
I
= {av § V(& T(x y)dc—2 j N;vdS. (13)
v &
The following can be shown

Nz=%:const=_ii; N.=N, =0, (14)
r4

1 ¥ y
for a nonisothermal fluid flow in an arbitrary cylindrical channel when the velocity field is defined by (1)
by starting from the equation of motion, where P;and P, are the hydrostatic pressure inthez=0and z=1
sections, respectively.
Considering the part of the fluid between two cylinder cross-sections separated by a unit length at
this time, and taking account of fluid adhesion to the cylinder surface and (14), we find the following for the
functional (13):

()
Fo= (@ [ v 76 g)as 42 P (o 15)
“2‘ ) Q

Let us solve the problem of the minimum of the functional (15) under the assumption that the function
v satisfies the homogeneous boundary condition
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Fig. 1. Polyethylene flow
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v=0 on L. (16)

Following Langenbach—Mikhlin [6], it can be proved that for a finite domain Q bounded by a piecewise~
smooth contour, and for a function g (I,, T(%, y)) having continuous first-and second-orderpartial derivatives
with respect to I, and T satisfying the inequalities:

Y(In T(x 9))>C, (C, = const>0); -
(I, T(
V(I T (5, ) +2 20> TC0)

al, .
the functional (15) in the space W( )(Q) has an absolute minimum which is achieved at a single point. If v,
is this point, then any minimizing sequence will converge to v, in the metric of the space Wz(i)(sz).

I,>C,, (C,= const>0), (18)

Let us examine the problem of nonisothermal polymer flow in a channel of elliptical cross-section.

As has been shown above, the problem of non-Newtonian fluid flow in cylindrical channels reduces to
the problem of the minimum of the functional (15), The domain of the section Q is an ellipse with the axes
2a and 2b. We consider the temperature field symmetric relative to the x and y axes,

Let us seek the function realizing an extremum of the functional (15) in the form

2
(1 ~ X *) (A + A - A+ .. A i), (19)

aZ
because of symmetry.

The elements of the coordinate system are hence linearly independent, form a complete system of
functions, and satisfy the boundary condition of the problem, The parameters Ap are found from the con-
dition of the minimum of the functional F(v) by using the Ritz method

BFU % du o
iU “w (I T, y))(ax S o o )xdy+2*U

The sequence {vp} thus constructed will be minimizing,

dxdy=0 (m=1,2, ..., ). (20)

Let us investigate the flow of a polyethylene melt. The dependence found experimentally [1] between
the shear stresses and the corresponding shear velocities for this material at the temperatures T, = 443°K,
T; = 463°K, T, = 483°K, T3 = 503°K, and T, = 523°K is represented by curves 1-5, respectively, in Fig. 1.
We approximate these curves by the functions 7yz = Tpz(8, dv/dr) continuous in the domain 0 < ¢ = 80°,

0 =dv/dr < =, where ¢ =T—-T,, T;=T. We give this function in the form

do du \2 du \? do \4 d
W= a () 22 Y e ) i N v
- (8 g’i) _ 7 0 (©) ir 4y ( )( ar ) + ay( )( dr) - a;(0) (-—dr ) for ——dr < 600, 21)
dr dv du
T2 = b, (B) + b, (B)— s
2 = by (8) +6,(6) o for =600 (22)

Here the dimensionality ofdv/dris sec™, and of Tyz is N/m?,
The functions ay(8), 2{(6), . . . , a3(9) are defined thus.

Values of ai(0x) (i=0,1,2,3;k=0,1, 2,3, 4), where 9k = T —T,, were determined separately by
the dependence (21) from the approximation of each curve in Fig, 1, By means of the values ai(0g), the
functions a{(9) were determined for which the following dependences had been obtained:
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Fig. 2. Curves of the velocity distribution in a channel of

elliptical cross-section A and circular section B (a = 2b, b

= 1cm) for different heat modes (x, y, r, cm; v, m/sec; 1, 2, 7)

isothermal flow (T = 443°K); 3, 4, 8) polymer cooling (T(a, 0)

= 443°K, T(0, b) = 458°K, T(0, 0) = 483°K); 5, 6, 9) polymer
ating (T(a, 0) = 483°K, T(0, b) = 498°K, T(0, 0) = 443°K).

A
/)]

\\5,

-

ay(8) = (0.46302-10—* — 0.64664 - 100 - 0,24408. 10— §2) N- sec/m’;

a4y (8) = (—0.12762-10~2 4- 0.21454 - 10~3  — 0.73399. 10" 02) N - sec/r?;
,(0) = (0.20441 107 — 0.35944-10™% 6 4 0.10099- 1071° 6?) N. sec®/m?;

45 (0) = (— 0.12854-107° 4- 0.24183.10711 6 — 0.66632- 1071 6%) N- sec*/m’.

(23)

The approximations were made by the method of equal areas [5]. The functions by(8), b;(8) were repre-
sented as

by (8) = g, + 8.9 + g,0%
by (6) = ko + kO -+ k, 02

We use the condition of continuity of the function 744(8, dv/dr) to determine the coefficients gis Ki
i=0,1,2):

(24)

D

rz l_g_‘r’_ = 600 =1 du (25)

= LdT =600

Substituting (21), (22), into (25) and equating coefficients of equal powers of ¢ on the right and left
sides, we obtain three equations fo determine g; and kj.

We compose the missing three. equations from the condition of equality of the values of ty4 in the ex-
perimental and theoretical curves for dv/dr = 1000 and ¢ = 0, 40, 80, The following expressions were final~-
1y obtained:

b, (0) = (6.18 —0.82328- 107 6 + 0.38309.107% 02) N/m?,
b, (8) = (0.525. 1072 4 0,62034. 10758 — 0.40496 - 1078 8%) N. sec/m.
The curves finally constructed by means of (21), (22), (23), and (26) coincide with the experimental curves
within the limits of the accuracy of construction.

(26)

Taking (21) and (22) into account, we have

Pp= {“’1 =y (8) -+ a,(0) 15 + ¢, (8)], + ag(8) I3? for V' T, < 600, @7
Py = by (8) 732 + b(8) for V1, >600.
Let us note that the representation of the function 7,,(9, dv/dr) in the form (21) and (22) assures

high accuracy of the approximation to the dependences found experimentally, and compliance with the in-
equality (18) at all points of the domain ¢ = dv/dr < «; 0 = ¢ = 80.

Let us consider the temperature field in the medium to be symmetric relative to the x, y axes, and
to be determined in the domain A(0 =r =1; 0 = ¢ = 7 /2) by the expression

n S i=0,1,2..),
0= (1— r)E Crt + 2 Lrs®gith [ (i 2 )

(28)
i=0 P (g=12,3..),
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/2 Fig. 3. Velocity profiles in a
’ ;. Q\ channel of elliptical section (x,
\ y, in ecm): 1, 1') polymer is
% \ cooled; 2, 2') isothermal flow;
N 3, 3") polymer is heated,
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where Ci, [ are constants, and r and ¢ are generalized polar coordinates related o the Cartesian x, y
coordinates by the dependence

x=arcos ¢, Yy=>brsing. (29)

The system (20) is solved by an iteration method {3]. The coefficients of the above-mentioned system
were determined by integration over an elliptical domain, The integration was executed by means of quad-
rature formulas associated with the domain of integration [2, 3]. All the calculations were carried out on
the BESM -2M.

An assertion on the existence and uniqueness of the solution for the variational problem for the func-
tional (15) under the condition of the existence of continuous first and second partial derivatives of the func-
tion 3 was made above; however, the functions 93/ 8l and 82y / 81 become discontinuous at v'I, = 600 in
the approximation mentioned, But this circumstance is not essential since the integrals in (20) were evalu-
ated for values of the integrands at separate points.

Results of computations for the temperature field defined by the dependence

0=yt (1 he)r, (50)
are presented in Figs. 2A, B.

The curves in Figs. 2A, B characterize the results of calculating the velocity distribution in a channel
of elliptical section for g = 2b (b= 1 cm) and of circular section (8P /8z = 13-10° N/ m?) for various heat
modes.

On the average, the temperature field for the cases represented in Fig. 2B depends quite inessentially
on ¢, hence the velocity profiles in different directions agree within the limits of the accuracy of the con-
struction,

The qualitative influence of the temperature distribution on the velocity profile is shown in Fig. 3 by
curves of the dependence of v/Vyax 00 X, ¥ (Vimax is the polymer velocity at the center), converted from
the curves in Fig. 2A.

Let us note that the results shown in Fig. 3 can be explained from physical considerations. Where
the polymer is relatively colder, its fluidity and velocity will diminish, while it will increase where it is
warmer,

The results elucidated above have been obtained by retaining seven An coefficients in (19), A com-
parison between results of computations with seven and five parameters An showed that both results agree
with 3-49% error in the velocity distribution at individual points, and up to 0.5% in the discharge.

Therefore, the velocity distribution in a nonlinearly viscous fluid moving in an arbitrary channel can
be found by the proposed method when the temperature distribution in the medium is known. Let us note
that the temperature field is unknown in the general case, and the problem reduces to the combined integra-
tion of the equations of motion and of energy balance. If such an integration is performed by successive ap-
proximations (i.e., by initially considering the velocity distribution the same as in an isothermal flow, a
temperature field is found by which the velocity distribution is refined, the temperature field is determined
by the found velocity distribution, etc.), then the successive approximation for the velocity field can be
found by the proposed method.
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NOTATION

are the Cartesian coordinates;

is the tangential shear stress;

are the shear velocity gradients;

is the temperature in the medium;

is the flow velocity of the medium;

are the stress tensor components;

is the hydrostatic pressure;

are the strain rate tensor components;

is the apparent viscosity;

is the second invariant of the strain rate tensor;
is the potential function;

are the constants;

is the stress tensor deviator;

is the functional;

are the vector components of the external and volume forces;
is the surface of the medium under consideration;
is the cylinder cross-section;

is the boundary of the section Q;

is the pressure drop per unit length;

are the hydrostatic pressure in the sections z=0and z = [;
are the semiaxes of the ellipse;

is the Sobolev space;

is the minimizing sequence;

is the temperature in the medium;

are the generalized polar coordinates,
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