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Variational principles for an incompressible viscous medium determining the velocity field 

in steady nonisothermal motion are formulated. The flow of a polyethylene melt is investi- 

gated under conditions of an inhomogeneous temperature distribution. 

Polymer materials in a viscous-fluid state manifest the properties of a non-Newtonian fluid. Pro- 

cesses of fabricating polymers into products are associated with the flow of melts of these materials under 

conditions of an inhomogeneous temperature distribution. 

Let us examine a nonisothermal non-Newtonian fluid in an arbitrary cylindrical channel. Let us in- 

troduce a fixed Cartesian coordinate system such that the z axis coincides with the channel axis. We as- 

sume the flow to be laminar, steady and directed along the channel axis. We also assume that the temper- 

ature T of the medium depends only on the x, y coordinates, where we consider the function T(x, y) known.* 

It can then be assumed that the velocity vector components are determined by 

v z = v ( x ,  y), v x = v y = O .  (1) 

Let  us examine the flow of a nonlinearly viscous fluid, in which the s t r e ss  tensor is determined to the 
accuracy  of the hydrostat ic  p r e s s u r e  by the velocity gradients and tempera ture  values in the time under con-  
siderat ion.  The equation of state of such a fluid is represented  in a sufficiently general case in the form 

ot~ = - -  P6,j + ~B~ )-. (2) 

Here r is a sca la r  function dependent on the tempera ture  and the second invariant of the s t ra in  rate  tensor ,  
i .e . ,  

_(1) (1) , .  
where 12 = Bij Bji / z .  

The s t ra in  rate tensor  components a re  

~=~0(t~, T(x, 9)), (3) 

B(!) = Ov~ Ovs (4) 
,, -~xj +Ox--~' 

and in the case  of the flow under considerat ion 

i ~ =  7 x  +t ,  0y /  " 

It can be shown that the relationship (2) admits the existence of a potential function ~ = ~ (I 2 , T(x, y)) 

such that 

* By vir tue of the low heat conductivity of po lymers ,  and the comparat ively  short  length of the channels in 
machines fabricat ing these mate r ia l s ,  the tempera ture  of polymer  mel ts  var ies  quite inessential ly along 
the channel length (see [4, 7], say). Hence, the assumption that the tempera ture  of the medium depends 
only on the x and y coordinates is acceptable in application to the p rocesses  of polymer  fabrication. 
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Off �84 
%j + P6i~ = si~ = o ") " (6) 

Comparing the relationship 

with (2), we find 

Starting from (8), we have 

Off) Off B( 0 
OBi~ ) =  OI, , ,  =,,,j (7)  

00 
, = - -  (S) 

012 

1, 
r  r(x, y))d~+C, (91 

0 

where C is an a rb i t r a ry  constant;  in par t icu lar ,  we can put C = 0. 

Variational Pr inc ip les .  Variational principles can be formulated for a nonisothermal non-Newtonian 
fluid flow by compar ing the steady flow state with the velocit ies v i and an adjacent state with the velocities 
v i + 6v i, where the possible velocities 6v i a re  combined with the incompressibi l i ty  condition, but not ab-  
solutely with the equation of motion in s t r e s ses .  

Let  us expand the potential function in a Taylor  se r ies  

ff t~(.9 6B(.0 ~oo) Off (,) I Ozff 
= ~L,q  ) 4  ~ 6Bq + a r # ) a . o T  v,-'ii o~kt + . . .  (10) 

~ i j  2 v ~ i j  u.Okl 

Integrat ing (10) over the volume V taking account of (6), we a r r ive  at 

= B(')" " S ff(SB$~))dV" (11) S A S ff(  " ) " v -  
V V V 

Using the law of conservat ion of mechanical  energy,  we a r r ive  at  the variational principle for an in- 
compress ib le  viscous medium governing the velocity field in steady nonisothermal  flow: 

A[.[ f f  (BII))dV - 2 S N, v f l S - -  2 ~ X i v f l V l = k F  = O +6 '  S ff(B~l')dV. (12) 
V S V V 

If the second variat ion 52 S ff(B~l))dV~ is posit ive,  then the real  velocity field determines  the minimum 
V 

of the functional F. 

Neglecting volume forces ,  and taking account of (9), the functional F becomes 

I, 

r = .( av .f' * (~' T (x, v)) a~ --  2 ~ N,o,aS. (la) 
v 0 S 

The following can be shown 

N~ = OP = const = Po --  P~ oz t ; N,, = N .  = 0, (14)  

for a nonisothermal  fluid flow in an a rb i t r a ry  cylindrical  channel when the velocity field is defined by (1) 
by s tar t ing from the equation of motion, where P0 and Pi  a re  the hydrostat ic  p r e s s u r e  in the z = 0 and z = l 

sect ions,  respect ively .  

Considering the par t  of the fluid between two cylinder c ro s s - s ec t i ons  separated by a unit length at 
this t ime,  and taking account of fluid adhesion to the cylinder surface and (14), we find the following for the 

functional (13): 

( ID 

F (v) = . da ~p (~, T(x, y)) d~ + 2 -&z oaa. (15) 

Let  us solve the problem of the minimum of the functional (15) under the assumption that the function 
v satisfies the homogeneous boundary condition 
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0 " ~ 0  800 d ~ / d r  

Fig. i. Polyethylene flow 
curves at different temper- 
atures (r, 104 N/m 2, dv/ 
dr, sec-1): i) T = 443~ 2) 
463~ 3) 483~ 4) 503~ 
5) 523~ 

D = 0 o n  t .  (16) 

Following Langenbach -Mikh l in  [6], it can be p roved  that  for  a finite domain fl bounded by a p i ecewise -  
smooth contour ,  and for  a function ~ (I2, T(x, y)) having continuous f i r s t - a n d  s e e o n d - o r d e r p a r t i a l  de r iva t ives  
with r e s p e c t  to 12 and T sat is fying the inequali t ies:  

~p(I=, T(x, !])) > C, (C1 = c o n s t > 0 ) i  (17) 

~2(12, T(x, y)) + 2  0'(I2' T(xy)) I2>~C~, (C~=const>0) ,  (18) 
013 

the functional (15) in the space  W}l)(a) has an absolute  min imum which is achieved a t  a single point. If  v 0 
is this point,  then any min imiz ing  sequence will converge  to v 0 in the m e t r i c  of the space  WI1)(~2). 

Le t  us examine the p rob l em  of noniso thermal  po lymer  flow in a channel of el l ipt ical  c r o s s - s e c t i o n .  

As has been shown above,  the p rob lem of non-Newtonian fluid flow in cyl indr ical  channels r educes  to 
the p rob l em of the min imum of the functional (15). The domain  of the sect ion f2 is an e l l ipse  with the axes  
2a and 2b. We cons ider  the t e m p e r a t u r e  field s y m m e t r i c  re la t ive  to the x and y axes .  

Le t  us seek  the function rea l iz ing  an ex t r emum of the functional (15) in the fo rm 

( x2 Y~) 
v, = I a 2 b ~ (AI + A2x 2 4- A~y 2 + . . .  + Anx~iy2i), (19) 

because  of s y m m e t r y .  

The d e m e n t s  of the coordinate  s y s t em a r e  hence I inear ly  independent,  fo rm a complete  s y s t e m  of 
functions,  and sa t i s fy  the boundary condition of the p rob lem.  The p a r a m e t e r s  An a r e  found f rom the con-  
dition of the minimum of the functional F(v) by using the Ritz method 

OF(v) 2 ~ S  ~2(Iv T(x, y))( c?v 32v Ov O~v )dxdli + 2  OP f ;  Ov 
OA~ Ox OxOA~ -~ Oy OyOA~ ~z  ~ dxdy = 0 (m= 1, 2, . . ,  n). (20) 

The sequence {vn} thus cons t ruc ted  will be minimizing.  

Le t  us inves t igate  the flow of a polyethylene mel t .  The dependence found exper imenta l ly  [1] between 
the shear  s t r e s s e s  and the cor responding  shear  veloci t ies  for  this ma te r i a l  at  the t e m p e r a t u r e s  T O = 443~ 
T 1 = 463~ T 2 = 483~ T 3 = 503~ and T 4 = 523~ is r ep re sen t ed  by curves  1-5,  r e spec t ive ly ,  in Fig. 1. 
We approx ima te  these  curves  by the functions Trz = Trz(0, d r / d r )  continuous in the domain 0 -< 0 -< 80 ~ 
0 - < d r / d r  < % where  0 = T - T  0 , T 0-<T. We give this funetion in the fo rm 

do { 
"rr z 

"r(~) = b o (0) ~- bx (O)@rv for do ~z d-~- ~> 600. (22) 

Here the dimensionality ofdv/dr is sec -i, and of Trz is N/m 2. 

The functions ao(O ), at(O) . . . . .  as(O ) a r e  defined thus. 

Values  of  ai(0k) (i = 0, 1, 2, 3; k ~- 0, 1, 2, 3, 4), where  Ok = T k - T 0 ,  we re  de te rmined  s epa ra t e ly  by 
the dependence (21) f r o m  the approx imat ion  of each cu rve  in Fig. 1. By means  of the values  ai(Ok), the 
functions at(0 ) we re  de te rmined  for  which the following dependences had been obtained: 
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Fig.  2. C u r v e s  of  the ve loc i ty  d i s t r ibu t ion  in a channel  of 
e l l ipt ical  c r o s s - s e c t i o n  A and c i r c u l a r  s ec t ion  B (a = 2b, b 
= l cm)  fo r  d i f fe ren t  hea t  modes  (x, y, r ,  cm;  v, m / s e c ;  1, 2, 7) 
i s o t h e r m a l  flow (T = 443~ 3, 4,  8) p o l y m e r  cool ing  (T(a,  0) 
= 443~ T(0,  b) = 458~ T(0,  0) = 483~ 5, 6, 9) p o l y m e r  

a t ing  (T(a, 0) = 483~ T(0,  b) = 498~ T(0,  0) = 443~ 

ao(O) = (0-46302-10 - I  --0.64664.10-'a 0 + 0,24408.10 -s  0 ~) N-seclm2; 

al (0) = (--  0.12762.10 -3 + 0.21454.10 -5 0 - -  0.73399.10 -s  02) N. secVm2; 
(23) 

as (0) = (0.20441.10-' - -  0.35944-10 -s  0 + 0.10099. I0 - l~ 0 ~) I,I. seP/rn2; 

a~(0) = (--  0.12854. I0 -9 -~ 0.24183.10 -11 0 " 0.66632. I0-14 0 ~) N. seca/m 2. 

The  a p p r o x i m a t i o n s  w e r e  m a d e  by the me thod  of  equal a r e a s  [5]. The  funct ions b0(0), bl(0 ) w e r e  r e p r e -  
sented  a s  

b o (0) = go + glO + g202; (24)  

bl (0) = ko + klO + k~ 02. 

We use  the condi t ion of  cont inui ty  of  the funct ion Trz(0,  d v / d r )  to d e t e r m i n e  the coef f i c ien t s  gi, ki  
(i= 0 , 1 , 2 ) :  

�9 ~(') �9 = T(2)I (25)  
rz I a v  = 6 0 0  rz [ d v  = 6 0 0  

dr dr 

Subst i tu t ing (21), (22), into (25) and equat ing coef f i c ien t s  of  equal p o w e r s  of 0 on the r igh t  and lef t  
s i d e s ,  we obta in  t h r e e  equat ions  to d e t e r m i n e  gi and k i. 

We c o m p o s e  the m i s s i n g  t h r e e  equat ions  f r o m  the condi t ion  of  equal i ty  of the va lues  of Trz in the e x -  
p e r i m e n t a l  and t heo re t i ca l  c u r v e s  for  d v / d r  = 1000 and 0 = 0, 40,  80. The  fol lowing e x p r e s s i o n s  w e r e  f ina l -  
ly  obta ined:  

b0(0 ) = (6,18 --0.82328. l0 -1 6 + 0.38309.10 -3 02) N/m z, 
(26) 

b I (0) = (0.525. I0 -2 + 0,62034.10 -50 --  0.40496. I0 -~ 02) N. sec/m 2. 

The curves finally constructed by means of (21), (22), (23), and (26) coincide with the experimental curves 
within the l im i t s  of the a c c u r a c y  of  cons t ruc t ion .  

Tak ing  (21) and (22) into accoun t ,  we have  

~p = { $1 = ao (0) + a 1 (0) f2/2 + a, (O)I 2 + aa(O ) I~/2 for V ~  ~ 600, (27) 

r bo(0)/i -'/2 + b, (0) fo~ V ~  > 600. 

Le t  us  note  tha t  the r e p r e s e n t a t i o n  of the funct ion Trz(0,  d r / d r )  in the f o r m  (21) and (22) a s s u r e s  
high a c c u r a c y  of the app rox ima t ion  to the dependences  found expe r imen t a l l y ,  and compl i ance  with the in -  
equal i ty  (18) a t  a l l  points  of the domain  0 -< d v / d r  < r162 ; 0 ~ 0 -< 80. 

L e t  u s  c o n s i d e r  the t e m p e r a t u r e  field in the m e d i u m  to be  s y m m e t r i c  r e l a t i v e  to the x, y a x e s ,  and 
to be d e t e r m i n e d  in the domain  A(0 -< r -<.1; 0 -< o -- ~ / 2 )  by the e x p r e s s i o n  

m S 

0 = (1 - -  r ) ~  C,r' + ~ l~rg(')+:(k) -§ lo (] = 0; 1; 2 . . .) ,  (28) 
~=o k=l (g = i; 2; 3 .. .),  
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1. ~ channel  of eI l ipf ieal  s ec t ion  (x, 
qo y,  in era):  1, 1') p o l y m e r  is  

cooled;  2 ,  2') i s o t h e r m a l  flow; 
q~ 3, 3') polymer is heated. 

�9 r! l 
0 q2 q~ ~6 q '/~m~x 

where Ci, I k are constants, and r and ~v are generalized polar coordinates related to the Cartesian x, y 
coordinates by the dependence 

x = ar cos % y = br sin q). (2 9) 

The system (20) is solved by an iteration method [3]. The coefficients of the above-mentioned system 
were determined by integration over an elliptical domain. The integration was executed by means of quad- 
rature formulas associated with the domain of integration [2, 3]. All the calculations were carried out on 
the BESM-2M. 

An assertion on the existence and uniqueness of the solution for the variational problem for the fune- 
tio~al (15) under the condition of the existence of continuous first and second partial derivatives of the func- 
tion r was made above; however, the functions 0r 2 and ~2~/aI~ become discontinuous at CI 2 = 600 in 
the approximation mentioned. But this circumstance is not essential since the integrals in (20) were evalu- 

ated for values of the integrands at separate points. 

Results of computations for the temperature field defined by the dependence 

o = 1 o -;- (!1 -I- l~q~) r ,  (30) 

are presented in Figs. 2A, B. 

The curves in Figs. 2A, B characterize the results of calculating the velocity distribution in a channel 
of elliptical section for a = 2b (b = 1 cm) and of circular section (- OP/Oz = 13 �9 l0 G N/m 3) for various heat 

modes. 

On the average, the temperature field for the cases represented in Fig. 2B depends quite inessentially 
on ~o, hence the velocity profiles in different directions agree within the limits of the accuracy of the con- 

struction. 

The qualitative influence of the temperature distribution on the velocity profile is shown in Fig. 3 by 

curves of the dependence of V/Vma X on x, y (Vma x is the polymer velocity at the center), converted from 

the curves in Fig. 2A. 

Let us note that the results shown in Fig. 3 can be explained from physical considerations. Where 
the polymer is relatively colder, its fluidity and velocity will diminish, while it will increase where it is 

warmer. 

The results elucidated above have been obtained by retaining seven An coefficients in (19). A com- 
parison between results of computations with seven and five parameters An showed that both results agree 
with 3-4% error in the velocity distribution at individual points, and up to 0.5% in the discharge. 

Therefore, the velocity distribution in a nonlinearly viscous fluid moving in an arbitrary channel can 
be fotmd by the proposed method when the temperature distribution in the medium is known. Let us note 
that the temperature field is unknown in the general case, and the problem reduces to the combined integra- 
tion of the equations of motion and of energy balance. If such an integration is performed by successive ap- 
proximations (i.e., by initially considering the velocity distribution the same as in an isothermal flow, a 
temperature field is found by which the velocity distribution is refined, the temperature field is determined 
by the found velocity distribution, etc.), then the successive approximation for the velocity field can be 

found by the proposed method. 
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x, y, z 

Trz 
dv/dx, dv/dy, dr/dr 

T 

VZ 

aij 
P 

C, C I, C 2 

s i �9 FIv) 
Ni, Xi 
S 

L 
oP/~z 
Po, Pi 
a,b 
W2(O (a) 
{vj 
0 
r ,  qo 

NOTATION 

are the Cartesian coordinates; 
is the tangent ia l  shear stress; 
are the shear velocity gradients; 
is the temperature in the medium; 
is the flow velocity of the medium; 
are the stress tensor components; 
is the hydrostatic pressure; 
are the strain rate tensor components; 

is the apparent viscosity; 
is the second invariant of the strain rate tensor; 
is the potential function; 
are the constants; 
is the stress tensor deviator; 
is the functional; 
are the vector components of the external and volume forces; 
is the surface of the medium under consideration; 
is the cylinder cross-section; 
is the boundary of the section 2; 
is the pressure drop per unit length; 
are the hydrostatic pressure in the sections z = 0 and z = l ; 
are the semiaxes of the ellipse; 
is the Sobolev space; 
is the minimizing sequence; 
is the temperature in the medium; 
are the generalized polar coordinates. 

I, 
2. 
3. 
4. 

5, 
6. 

7. 
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